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Abstract
It is shown that the radial part of the hydrogen Hamiltonian factorizes as the
product of two not mutually adjoint first-order differential operators plus a
complex constant ε. The 1-SUSY approach is used to construct non-Hermitian
operators with hydrogen spectra. Other non-Hermitian Hamiltonians are shown
to admit an extra ‘complex energy’ at ε. New self-adjoint hydrogen-like
Hamiltonians are also derived by using a 2-SUSY transformation with complex
conjugate pairs ε, ε̄.

PACS numbers: 03.65.Ge, 03.65.Fd, 03.65.Ca

1. Introduction

The supersymmetric quantum mechanics (SUSY QM) has grown on the factorization and
intertwining methods [1] applied to transform the physical Hamiltonians. It yields new exactly
solvable potentials which are either strictly isospectral to the initial one because of broken
SUSY, or almost isospectral due to unbroken SUSY (see the recent reviews [2]). The higher
order SUSY QM amended the conviction that the excited states cannot be used to generate
non-singular SUSY partners [3–6]. Some applications deal with singular [7], soliton-type [8],
periodic [9] and other potentials [10]. Of special interest is the confluent algorithm [8, 11]
for which the second-order procedure is applied to add a single level at an arbitrary point of
the energy axis. However, almost all the works on the subject make use of transformation
functions with the real factorization constants ε and with the factor-operators being always
mutually adjoint.

The case of complex ε has not been studied to the desired extent. Exceptional cases are
[12–14], where the 2-SUSY treatment with ε ∈ C is formulated to obtain either Hermitian or
non-Hermitian SUSY partners of a given initial Hamiltonian. Indeed, one of our purposes is
to show that the Hamiltonians H can be factorized as the product of two not mutually adjoint
first-order operators A,B, plus a complex constant even for self-adjoint H. The method is
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not limited to the Hamiltonians possessing the lower spectral bound; it can also yield non-
Hermitian Hamiltonians with complex potentials. Although the typical Hamiltonians of QM
are Hermitian, non-Hermitian ones appear in molecular physics and quantum chemistry [15],
superconductivity [16], quantum field theory [17] and other domains [18]. The fact that they
admit real eigenvalues for which the associated eigenfunctions are square-integrable [19] has
been the basis of recent studies on PT-symmetry [20, 21], pseudo-Hermiticity [22, 23] and
diverse physical models [24].

In this paper, we illustrate these facts by constructing the Hermitian and non-Hermitian
SUSY partners of the radial part (H�) of the hydrogen Hamiltonian. Even though our non-
Hermitian operators are not PT-invariant, we shall see that a class of them has real eigenvalues
identical to the hydrogen energies. The reality of the spectrum in this case is due to the
breaking of supersymmetry.

It will be shown that there is another class of non-Hermitian operators having an extra
square-integrable eigenfunction associated with ε ∈ C. In this case, the ‘complex energy’
ε arises from the unbroken supersymmetry and, up to now, does not have a well-established
physical meaning (but see [25]). Unlike the phase-equivalent complex potentials [14], the new
‘bound state’ associated with ε is nodeless. Moreover, in counterdistinction with the formalism
of PT-symmetry and pseudo-Hermiticity, where complex energies appear in conjugate pairs,
it turns out that ε̄ does not belong to the spectrum of the SUSY partner of H� generated
through ε.

In general, we shall see that the SUSY transformation is adequate to analytically determine
normalizable eigenfunctions of non-Hermitian Hamiltonians, including those with complex
energies. In this sense, our ‘complex SUSY transformation’ seems an analytical complement
of the numerical techniques previously reported (see [14] and references therein). The
eigenfunction connected with ε is then removed by iterating the procedure in order to construct
Hermitian 2-SUSY partners of H�.

The paper is organized as follows: section 2 introduces the atypical factorizations
H� = AB + ε, where ε ∈ C and the first-order differential operators A and B are not
mutually adjoint. Sections 3 and 4 are devoted to the construction of non-Hermitian 1-SUSY
and Hermitian 2-SUSY partners, H(ζ ) and H̃ respectively, of H�. Final remarks and discussion
are given in section 5.

2. The complex-type factorization method

Let us consider a single electron in the field produced by a nucleus with Z protons. We shall
use E = Z/2rB and rB = h̄2/Ze2m for the units of energy and coordinates, respectively. The
corresponding time-independent Schrödinger equation reduces to H�ψn,�(r) = Enψn,�(r),
with solutions

ψn,�(r) = Cn,�r
�+1 e−r/n

1F1(� + 1 − n, 2� + 2; 2r/n) En = −1/n2 (1)

where N � n = � + s + 1; � = 0, 1, 2, . . . , n − 1; s ∈ Z
+; Cn,� is the normalization constant,

1F1(a, c, z) is Kummer’s function and L2(R+, 4π) � ψn,�(r) ≡ rRn,�(r), with an inner
product defined by 〈ψ, φ〉 = 4π

∫ +∞
0 ψ̄(r)φ(r) dr < ∞ and boundary conditions at r = 0:

ψ(0) = 0, ψ ′(r) = R(0). The effective potential V�(r) has the domain DV = [0,∞) and

H� ≡ − d2

dr2
+ V�(r) = − d2

dr2
+

�(� + 1)

r2
− 2

r
. (2)

The Hamiltonian (2) is factorized as follows:

H� = AB + ε (3)
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where the factorization constant is a complex number C � ε := ε1 + iε2; ε1, ε2 �= 0 ∈ R and
the first-order operators A,B, are not mutually adjoint (compare [6, 26]):

A := − d

dr
+ β(r) B := d

dr
+ β(r) (4)

with β a complex-valued function fulfilling

−β ′(r) + β2(r) + ε = V�(r). (5)

The Riccati equation (5) is solved by means of the logarithmic transformation β(r) =
− d

dr
ln u(r) for which u is the most general eigenfunction of H� (not necessarily normalizable)

belonging to ε ≡ −k2; C � k = k1 + ik2; k1, k2 ∈ R:

u(r) = r�+1e−krf (r)

f (r) := α1F1(� + 1 − 1/k, 2� + 2, 2kr) + ζU(� + 1 − 1/k, 2� + 2, 2kr)
(6)

where α and ζ are complex constants and U(a, c, z) is the logarithmic hypergeometric function.
The global behaviour of these u-functions is analysed in the appendix.

Hence, for the β-function we have

β(r) = −� + 1

r
+ k + 	(r) 	(r) := − d

dr
ln f (r). (7)

A convenient expression for β1(r), β2(r), the real and imaginary parts of β(r) respectively,
can be found in the appendix.

3. New complex hydrogen-like potentials

Let us consider the value ε fixed. For convenience we shall make explicit the dependence of
	 on ζ . Now, let us reverse the order of the factors in (3):

BA + ε = − d2

dr2
+ V�+1(r) + 2	′(r; ζ ) ≡ − d2

dr2
+ V(r; ζ ) := H(ζ ) (8)

where H(ζ ) is a non-Hermitian second-order differential operator and we have used (5) and
(7). The next step is to solve the related eigenvalue equation:

H(ζ )
 = λ
 λ = λ1 + iλ2 λ1, λ2 ∈ R. (9)

The dependence of 
 and λ on ζ will be dropped for simplicity. Note that equations (3) and
(8) imply an intertwining between the Hamiltonian H� and the non-Hermitian operator H(ζ ):

H(ζ )B = BH� H�A = AH(ζ ). (10)

Thereby, one sees that 
 ∝ Bϕ is a solution of (9) if ϕ satisfies H�ϕ = λϕ, while A reverses
the action of B. Now, the general form of ϕ is obtained by taking ε = −k2 for λ = −κ2, and
u(r) for ϕ(r) in (6). Hence, we have

ϕ(r) = r�+1 e−κr{C1F1(� + 1 − 1/κ, 2� + 2, 2κr) + DU(� + 1 − 1/κ, 2� + 2, 2κr)} (11)

with C and D arbitrary complex constants. Therefore,


 ∝ Bϕ = W(u, ϕ)

u
. (12)

We are looking now for the constraints on α, ζ, λ, C and D leading to square-integrable 
.
First, consider λ �= ε (i.e., κ �= k); the behaviour of 
 near the origin is


(r ∼ 0) ∝
{−D (2�+1)

(2κ)2�+1
�(2�+1)

�(�+1−1/κ)
1

r�+1 ζ = 0 α �= 0

D (k−κ)

(2κ)2�+1
�(2�+1)

�(�+1−1/κ)
1
r� ζ �= 0 arbitrary α.

(13)
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Thus, 
 becomes divergent at r = 0 except if either (1) λ = −κ2 is real and κ−1 = � + s + 1,

s ∈ Z
+, or (2) λ is complex but D = 0. Let us pay some attention to these conditions.

Case 1 (real λ). Let us fix R � κ−1 = � + s + 1 = n, n ∈ N. In this case, in (11)
1F1(a, c; z) and U(a, c; z) are essentially the same function. Therefore, one can take
D = 0 and C = Cn,� (see equation (1)), so ϕ(r) = ψn,�(r) and the functions (12) behave
asymptotically as 
(r) ∝ ψn,�(r)r→∞. On the other hand, a straightforward calculation
shows that these functions obey the following boundary conditions at r = 0: 
(0, ζ ) = R(0);

 ′(0, ζ = 0) = −δ�0; 
 ′(0, ζ �= 0) = −�

(
δ�0
r

+ δ�1
)
, with δ�n the Kronecker delta. Thus


(r; ζ ) ∝
[
k − 1

n
+

d

dr
ln

(
1F1(� + 1 − n, 2� + 2; 2r/n)

f (r)

)]
ψn,�(r) (14)

are square-integrable eigenfunctions of H(ζ ) with the real eigenvalues λ = −1/n2 = En.

Case 2 (complex λ). For κ ∈ C and D = 0 the function (12) behaves asymptotically as
follows:


(r) ∼


C (κ∓k)

(2κ)�+1+1/κ

�(2�+2)

�(�+1−1/κ)
eκr

r1/κ κ1 > 0

{
k1 > 0
k1 < 0

∓C (k±κ)

(−2κ)�+1−1/κ

�(2�+2)

�(�+1+1/κ)
e−κr

r−1/κ κ1 < 0

{
k1 > 0
k1 < 0

(15)

which always diverges for r → ∞. Hence, there is no function 
 ∈ L2(R+, 4π) solving (9)
for a complex λ �= ε (i.e., κ �= k) and D = 0.

Formula (14) therefore gives all square-integrable solutions {
(r; ζ )} of (9) for λ �= ε.
Concerning the case λ = ε, we see from equation (8) that any 
ε(r) in the one-dimensional
kernel of A is an eigenfunction of H(ζ ) belonging to ε. After a simple calculation one gets


ε(r) ∝ 1

u(r)
. (16)

This function can be in L2(R+, 4π) for appropriate values of α and ζ . In such a case, 
ε is an
extra square-integrable eigenfunction of H(ζ ) associated with ε ∈ C. Finally, a straightforward
calculation shows that, although {
(r; ζ ),
ε(r)} are elements of L2(R+, 4π), they do not
form an orthogonal set. A discussion on these kinds of properties of the inner product is given
in [24]. The next subsections analyse these conditions and classify the resulting potentials
according to their spectra.

3.1. The real spectrum

From figure 1(a), one sees that the behaviour of the complex function V(r; ζ ), for α �= 0 and
ζ = 0, is given by

V(r; ζ = 0) ∼
{

V�+1(r) for r ∼ 0

0 r → ∞.

Consistently with case (a) of the appendix, the function 
ε(r) diverges at r = 0. Hence, 
ε(r)

is not in L2(R+, 4π) and the discrete spectrum σd(H�+1) of H(ζ = 0) is exactly the same as
that of the hydrogen atom σd(H�+1) = σd(H�). Figure 1(b) depicts the behaviour of ψn,� and
the related function (14) for one of the excited states.

Another class of complex potentials V(r; ζ ) sharing the same spectrum as H� is obtained
by considering case (b) of the appendix.
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Figure 1. (a) The potential V�+1(r) (dashed curve) and the real part of V(r; ζ ) for � = 1,
ε = −(0.1 + i 0.5)2, α = 1 and ζ = 0. (b) The corresponding unnormalized |ψ3,1(r)|2 (dashed
curve) and its SUSY partner |
(r; ζ = 0)|2 for E3 = −1/9 and the same values of the parameters.
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Figure 2. (a) The potential V�−1(r) (dashed curve) and the real part of V(r; ζ ), for � = 1,
ε = −(0.1 + i 0.5)2, α = 1 and ζ = 0.5 + i 0.5. (b) The corresponding unnormalized |
ε(r)|2 for
the same values of the parameters.

3.2. Complex potentials admitting complex ‘energies’

Let us consider ζ �= 0. Then the complex function V(r; ζ ) behaves as shown in figure 2(a),
i.e.

V(r; ζ �= 0) ∼
{

V�−1(r) for r ∼ 0 arbitrary α

0 r → ∞.

Case (d) of the appendix shows that, for (α, ζ ) ∈ C0 and θ�(k) �= 0, the function 
ε(r)

behaves as


ε(r) ∼



(2k)2�+1

ζ

�(�+1−1/k)

�(2�+1)
r� r ∼ 0

(2k)�+1+1/k

α

�(�+1−1/k)

�(2�+2)
r1/k e−kr r → ∞ k1 > 0

(2k)�+1−1/k

θ�(k)
r−1/k ekr r → ∞ k1 < 0

(17)

which clearly belongs to L2(R+, 4π). Figure 2(b) depicts the global behaviour of |
ε |2.
Therefore, the discrete spectrum σd(H�−1) of H(ζ �= 0) is given by σd(H�−1) = σd(H�) ∪ {ε},
provided that (α, ζ ) ∈ C0, θ�(k) �= 0.

Finally, case (c) of the appendix, gives another solution in the same class.
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4. The new real hydrogen-like potentials

We shall now extend the analysis of the previous section by intertwining H� with a new (to be
determined) Hamiltonian H̃ as follows:

H̃ Ã = ÃH� (18)

where the differential operator Ã is of the second order

Ã := d2

dr2
+ η(r)

d

dr
+ γ (r) (19)

and H̃ reads

H̃ := − d2

dr2
+ Ṽ (r). (20)

The operators (19) and (20) depend implicitly on the label �. A straightforward calculation
allows us to express the functions η and γ of (19) in terms of the auto-Bäcklund transformation
of the solutions of (5) for εa and εb [6]:

η(r) = −
(

εa − εb

βa(r) − βb(r)

)
εa �= εb (21)

γ (r) = β ′
b(r) − β2

b (r) + η(r)βb(r) εa �= εb. (22)

Thus, the second-order intertwining operator Ã in (19) is expressed by two different solutions
of the first-order case. Moreover, it factorizes as Ã = a2a1, where

a1 ≡ d

dr
+ βa = B a2 ≡ d

dr
+ η − βa = −A + η. (23)

Thereby, it is easy to rewrite Ã as

Ã = (−A + η)B = −H� + ε + ηB (24)

and potential (20) is obtained through

Ṽ (r) = V�(r) + 2η′(r). (25)

In order to get a real η(r) in (21), (25), we consider the solution βa(r) of (5) for εa ∈ C as
given and, by taking εb = ε̄a and βb(r) = β̄a(r) in (21), one finds

η(r) = − Im(εa)

Im(βa)
≡ − ε2

β2(r)
= − d

dr
ln ω(r) (26)

where ω is defined in (A.2) of the appendix and the labels a and b have been dropped from ε2

and β2. Henceforth, potential (25) is real:

Ṽ (r) = V�(r) − 2
d2

dr2
ln ω(r). (27)

We are looking for potentials Ṽ (r) defined in the same initial domain DV = [0,∞) (the
situation when the initial domain is changed requires a different treatment, see, e.g., Márquez
et al in [7]). According to the proposition in the appendix, ω has at most one isolated zero
in DV . By choosing a proper u, the function ω can be so constructed that its isolated zero
coincides with one of the edges of DV (compare [13]):

lim
r→0

u(r) = 0 ⇒ lim
r→0

ω(r) = 0 (28)

lim
r→∞ u(r) = 0 ⇒ lim

r→∞ ω(r) = 0. (29)
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Figure 3. The initial potential V�(r) (dashed curve) and its 2-SUSY partner Ṽ (r) for α = 1, ζ = 0
and (a) � = 1, ε = −(0.01 + i)2, (b) � = 0, ε = −(0.5 + i 0.1)2.

Let us examine the consequences. First, condition (28) is satisfied if the u in (6) is chosen
with α �= 0 and ζ = 0, so that the potential (27) behaves as shown in figure 3, i.e.

Ṽ (r;α �= 0; ζ = 0) ∼
{
V�+2(r) for r ∼ 0 arbitrary k1

0 r → ∞ arbitrary k1.
(30)

On the other hand, condition (29) can be achieved for α = 0, ζ �= 0 and k1 > 0. In this
case equation (27) leads to

Ṽ (r;α = 0; ζ �= 0) ∼
{

V�(r) for r ∼ 0,

0 r → ∞.
(31)

The real-valued potentials (30) and (31) resemble those of the hydrogen and they could, in
principle, represent physical systems as the Hamiltonian (20) is self-adjoint. The next step is
to analyse the new eigenvalue equation

H̃ ψ̃ = Ẽψ̃ (32)

whose solutions, by similar arguments as for the first-order case, are now obtained from the
linear second-order transformation (see equation (18)):

ψ̃(r) ∝ Ãψn,�(r) = (−En + ε)ψn,�(r) + η(r, ζ )
(r, ζ ) (33)

where we have used (24) and 
(r, ζ ) is given by (14). The corresponding boundary conditions
at r = 0 can be obtained from those of ψn,�(r) and 
(r, ζ ).

It is clear that the first term on the rhs of (33) is in L2(R+, 4π). The behaviour of the
related second term is found by observing that

(1) If α �= 0 and ζ = 0 then η diverges as r−1 at the origin while it is constant at r = ∞.
Therefore, the product η(r, 0)
(r, 0) is zero at the edges of DV and remains finite in
all DV .

(2) If α = 0 and ζ �= 0 then η is a constant at both edges of DV . Hence, η(r, ζ �= 0)
(r, ζ �=
0) is again well behaved in all DV .

Thus, the eigenfunctions ψ̃ of H̃ given in (33) are in L2(R+, 4π) and H̃ is an exactly
solvable Hamiltonian with the same spectrum as the hydrogen atom.
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5. Summary and discussion

In this paper, we have used a new type of factorization method to analyse a set of non-
Hermitian SUSY partners of the radial part of the hydrogen Hamiltonian. In order to
generate the corresponding potentials we have used Darboux transformations with complex
factorization constants. In contrast to PT-symmetry [19–21] and pseudo-supersymmetry [22],
the breaking of supersymmetry leads to purely real spectra. However, while the pseudo-
Hermiticity and PT-symmetry breaking involve pairs of conjugate complex eigenvalues, the
unbroken supersymmetry (for which the non-Hermitian 1-SUSY partners are not strictly
isospectral) involves just a single ‘complex energy’. To be more precise, in order to add two
extra eigenvalues (real or complex) to a given spectrum one applies either twice the 1-SUSY
procedure or a single 2-SUSY transformation (both can be made equivalent for the case we
are dealing with). Now, if the two new energies form a complex conjugate pair and if the
functions η(r) and γ (r) of the non-singular intertwining operator (19) are real, then the final
Hamiltonian becomes self-adjoint and does not admit any complex eigenvalue, just as we have
shown in section 4.

The problem of finding normalizable solutions belonging to complex eigenvalues for
non-Hermitian Schrödinger equations has been solved previously by numerical techniques in
[14] and analysed inside a Lie-algebraic framework in [27]. In this paper, we performed an
analytical study and we expect that our results complement the numerical ones. Similarly as
in other non-Hermitian cases discussed in the literature, the interpretation of the ‘complex
energies’ is an open problem, though we note possible applications to the absorptive
(dissipative) systems [25].

In general, we have shown that the extension of the SUSY treatment to include complex
factorization constants leads to results which are out of the scope of the PT-symmetry and
pseudo-Hermiticity. Indeed, the reality of the spectrum of the Hamiltonians H(ζ ) in section 3
depends on the parameter ζ , as has been established in subsections 3.1 and 3.2. As the
non-Hermitian Hamiltonians H(ζ �= 0) in subsection 3.2 do not satisfy the theorems by
Mostafazadeh [22], they are not pseudo-Hermitian. On the other hand, it is not yet clear
whether the Hamiltonians H(ζ = 0) of subsection 3.1 could be pseudo-Hermitian or not
(though a primary impression can be depicted by noting that the non-Hermiticity of H(ζ )

depends not on ζ but on the non-trivial imaginary part of the factorization constant ε). Work
in this direction is in progress and will be published elsewhere.
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Appendix

The global behaviour of the eigenfunctions u(r) of equation (6) can be described in terms of
α, ζ and the sign of k1:

(a) If α �= 0 and ζ = 0 then u(r) is zero at the origin r = 0 while it diverges at r = ∞.
(b) If α = 0, ζ �= 0 and k1 > 0, then u(r) diverges at the origin and tends to zero for r → ∞.
(c) If α = 0, ζ �= 0 and k1 < 0, then u(r) diverges at r = 0 and r = ∞.
(d) Let C0 ⊂ C × C be the subset of complex pairs α �= 0, ζ �= 0, such that

ζ �= −α
1F1(� + 1 − 1/k, 2� + 2, 2kr0)

U(� + 1 − 1/k, 2� + 2, 2kr0)
∀r0 ∈ (0,∞).
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If

θ�(k) := ζ + α
�(2� + 2)

�(� + 1 + 1/k)
e±i(�+1−1/k)π (A.1)

is different from zero for (α, ζ ) ∈ C0 , then u(r) is free of zeros in all DV and diverges at
r = 0 and r = ∞.

(e) If (α, ζ ) ∈ C0, k1 < 0 and θ�(k) = 0, then u(r) diverges at the origin while
limr→∞ u(r) = 0 (coinciding indeed with (b)).

The presence of zeros in these functions has been studied by means of the following:

Proposition. Let u(r) ∈ C1(Dv) be a solution of the Schrödinger equation u′′(r) =
[v(r) − ε]u(r), where v(r) is a real-valued potential with domain Dv and ε ∈ C. Assume that
Dv is a simply connected region of R. If Im(ε) �= 0, then the complex-valued function u(r)

admits at most one isolated zero in Dv .

Proof. Let

ω(r) := W(u, ū)

2i Im(ε)
(A.2)

where the bar denotes complex conjugation and W(·, ·) corresponds to the Wronskian of the
involved functions. Clearly ω is continuous in Dv and ω′(r) = |u(r)|2 � 0 ∀r ∈ Dv , so ω(r)

is always non-decreasing and can have either only one isolated zero or an entire interval of
zero points in Dv . As every zero of u(r) is, necessarily, a zero of ω(r) then u(r) admits at
most one isolated zero there. �

The real function ω(r) in (A.2) plays a relevant role in the 2-SUSY approach of section 4.
A convenient expression for β(r) in terms of ω is given by

β(r) = β1(r) + iβ2(r) ≡ −1

2

d

dr
ln ω′(r) + iε2

(
d

dr
ln ω(r)

)−1

. (A.3)
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